Announcement
Starting on July 4, 2018 the Indonesian Publication Index (IPI) has been acquired by the Ministry of Research Technology and Higher Education (RISTEKDIKTI) called GARUDA Garba Rujukan Digital (http://garuda.ristekdikti.go.id)
For further information email to portalgaruda@gmail.com

Thank you
Logo IPI  
Journal > TELKOMNIKA Indonesian Journal of Electrical Engineering > Adaptive System Identification using Markov Chain Monte Carlo

 

TELKOMNIKA Indonesian Journal of Electrical Engineering
Vol 13, No 1: January 2015
Adaptive System Identification using Markov Chain Monte Carlo
Anjum, Muhammad Ali Raza ( Army Public College of Management and Sciences, Rawalpindi, PAKISTAN)
Article Info   ABSTRACT
Published date:
01 Jan 2015
 
One of the major problems in adaptive filtering is the problem of system identification. It has been studied extensively due to its immense practical importance in a variety of fields. The underlying goal is to identify the impulse response of an unknown system. This is accomplished by placing a known system in parallel and feeding both systems with the same input. Due to initial disparity in their impulse responses, an error is generated between their outputs. This error is set to tune the impulse response of known system in a way that every change in impulse response reduces the magnitude of prospective error. This process is repeated until the error becomes negligible and the responses of both systems match. To specifically minimize the error, numerous adaptive algorithms are available. They are noteworthy either for their low computational complexity or high convergence speed. Recently, a method, known as Markov Chain Monte Carlo (MCMC), has gained much attention due to its remarkably low computational complexity. But despite this colossal advantage, properties of MCMC method have not been investigated for adaptive system identification problem. This article bridges this gap by providing a complete treatment of MCMC method in the aforementioned context.
Copyrights © 2015