Logo IPI  
Journal > Journal of Software Engineering > Resampling Logistic Regression untuk Penanganan Ketidakseimbangan Class pada Prediksi Cacat Software

 

Full Text PDF (467 kb)
Journal of Software Engineering
Vol 1, No 1 (2015)
Resampling Logistic Regression untuk Penanganan Ketidakseimbangan Class pada Prediksi Cacat Software
Rianto, Harsih ( STMIK Nusa Mandiri)
Wahono, Romi Satria ( Dian Nuswantoro University)
Article Info   ABSTRACT
Published date:
30 Apr 2015
 
Software yang berkualitas tinggi adalah software yang dapat membantu proses bisnis perusahaan dengan efektif, efesien dan tidak ditemukan cacat selama proses pengujian, pemeriksaan, dan implementasi. Perbaikan software setelah pengirimana dan implementasi, membutuhkan biaya jauh lebih mahal dari pada saat pengembangan.  Biaya yang dibutuhkan untuk pengujian software menghabisakan lebih dari 50% dari biaya pengembangan. Dibutuhkan model pengujian cacat software untuk mengurangi biaya yang dikeluarkan. Saat ini belum ada model prediksi cacat software yang berlaku umum pada saat digunakan digunakan. Model Logistic Regression merupakan model paling efektif dan efesien dalam prediksi cacat software.  Kelemahan  dari  Logistic Regression adalah rentan terhadap underfitting pada dataset yang kelasnya tidak seimbang, sehingga akan menghasilkan akurasi yang rendah. Dataset NASA MDP adalah dataset umum yang digunakan dalam prediksi cacat software. Salah satu karakter dari dataset prediksi cacat software, termasuk didalamnya dataset NASA MDP adalah memiliki ketidakseimbangan pada kelas. Untuk menangani masalah ketidakseimbangan kelas pada dataset cacat software pada penelitian ini diusulkan metode resampling. Eksperimen dilakukan untuk membandingkan hasil kinerja Logistic Regression sebelum dan setelah diterapkan metode resampling. Demikian juga dilakukan eksperimen untuk membandingkan metode yang diusulkan hasil pengklasifikasi lain seperti Naïve Bayes, Linear Descriminant Analysis, C4.5, Random Forest, Neural Network, k-Nearest Network. Hasil eksperimen menunjukkan bahwa tingkat akurasi Logistic Regression dengan resampling lebih tinggi dibandingkan dengan metode Logistric Regression yang tidak menggunakan resampling, demikian juga bila dibandingkan dengan pengkalisifkasi yang lain. Dari hasil eksperimen di atas dapat disimpulkan bahwa metode resampling terbukti efektif dalam menyelesaikan ketidakseimbangan kelas pada prediksi cacat software dengan algoritma Logistic Regression.
Copyrights © 2015