Announcement
Starting on July 4, 2018 the Indonesian Publication Index (IPI) has been acquired by the Ministry of Research Technology and Higher Education (RISTEKDIKTI) called GARUDA Garba Rujukan Digital (http://garuda.ristekdikti.go.id)
For further information email to portalgaruda@gmail.com

Thank you
Logo IPI  
Journal > Journal of Information Systems Engineering and Business Intelligence > Sistem Pendukung Keputusan Peramalan Jumlah Kunjungan Pasien Menggunakan Metode Extreme Learning Machine (Studi Kasus : Poli Gigi Rsu Dr. Wahidin Sudiro Husodo Mojokerto)

 

Full Text PDF (406 kb)
Journal of Information Systems Engineering and Business Intelligence
Vol 1, No 1 (2015): April
Sistem Pendukung Keputusan Peramalan Jumlah Kunjungan Pasien Menggunakan Metode Extreme Learning Machine (Studi Kasus : Poli Gigi Rsu Dr. Wahidin Sudiro Husodo Mojokerto)
Fardani, Delia Putri ( Universitas Airlangga)
Wuryanto, Eto ( Universitas Airlangga)
Werdiningsih, Indah ( Universitas Airlangga)
Article Info   ABSTRACT
Published date:
25 Jun 2015
 
Abstrak— Penelitian ini bertujuan merancang dan membangun sistem pendukung keputusan untuk meramalkan jumlah kunjungan pasien RSU Dr. Wahidin Sudiro Husodo Kota Mojokerto dengan menggunakan metode Extreme Learning Machine (ELM). Dengan adanya  sistem pendukung keputusan ini direktur Rumah Sakit dapat meramalkan jumlah kunjungan pasien dan membantu dalam pembuatan kebijakan rumah sakit, mengatur sumber daya manusia dan keuangan, serta mendistribusikan sumber daya material dengan benar khususnya pada poli gigi. Dalam rancang bangun sistem pendukung keputusan ini dilakukan dalam beberapa tahap. Tahap yang pertama, pengumpulan data untuk mengidentifikasi inputan yang dibutuhkan dalam penghitungan metode ELM. Tahap kedua, pengolahan data, data dibagi menjadi data training dan data testing dengan komposisi data training sebanyak 80% (463 data) dari total 579 data dan 20% (116 data) sisanya sebagai data testing yang kemudian di normalisasi. Tahap ketiga, peramalan jumlah kunjungan pasien menggunakan metode ELM. Tahap terakhir, perancangan sistem menggunakan sysflow dan pembangunan sistem berbasis desktop serta evaluasi sistem. Hasil penelitian berupa aplikasi sistem pendukung keputusan untuk meramalkan jumlah kunjungan pasien. Dan melalui uji coba menggunakan 116 data testing berdasarkan fungsi aktivasi sigmoid biner dengan jumlah hidden layer sebanyak 7 unit dan Epoch 500 diperoleh hasil optimal MSE sebesar 0.027 Kata Kunci— Sistem Pendukung Keputusan, Peramalan, Jaringan Syaraf Tiruan, Extreme Learning MachineAbstract— In this research, a decision support system to predict the number of patients visit RSU Dr. Wahidin Sudiro Husodo Kota Mojokerto was designed and developed using Extreme Learning Machine (ELM) method which aims to assist director in making decision for the hospital, managing human and financial resource, as well as distributing material resource properly especially in the Department of Dentistry. The design of this decision support system to predict the number of patients visit with ELM method is divided into several stages. The first stage is to identify the input data collection needed in the calculation method of ELM. The next stage is processing the data; the data is divided into training data and testing data and then normalized, in which training data is 80% (452 data) and testing 579 data 20% (116 data). The third stage is problem solving using ELM. The last stage is the design and development of systems using sysflow and desktop-based system that includes the implementation and evaluation of the system. The result of this research is an application of decision supporting system to predict number of patients. By using 116 testing data based on the binary sigmoid activation function using 7 units of hidden layer and 500 Epoch then Optimal MSE value that was obtained is 0.027. Keywords— Decision Supporting System, Prediction, Artificial Neural Network, Extreme Learning Machine
Copyrights © 2015