Logo IPI  
Journal > Journal of Software Engineering > Penggunaan Random Under Sampling untuk Penanganan Ketidakseimbangan Kelas pada Prediksi Cacat Software Berbasis Neural Network

 

Full Text PDF (979 kb)
Journal of Software Engineering
Vol 1, No 2 (2015)
Penggunaan Random Under Sampling untuk Penanganan Ketidakseimbangan Kelas pada Prediksi Cacat Software Berbasis Neural Network
Irawan, Erna ( Universitas BSI)
Wahono, Romi Satria ( Universitas Dian Nuswantoro)
Article Info   ABSTRACT
Published date:
16 Dec 2015
 
Abstract : Penurunan kualitas software dan biaya perbaikan yang tinggi dapat diakibatkan kesalahan atau cacat pada software. Prediksi cacat software sangat penting di dalam software engineering, terutama dalam mengatasi masalah efektifitas dan efisiensi sehingga dapat meningkatkan kualitas software. Neural Network (NN) merupakan algoritma klasifikasi yang telah terbukti mampu mengatasi masalah data nonlinear dan memiliki sensitifitas yang tinggi terhadap suatu data serta mampu menganalisa data yang besar. Dataset NASA MDP merupakan data metric yang nonlinear  perangkat lunak yang biasa digunakan untuk penelitian software defect prediction  (prediksi cacat software). Terdapat 62 penelitian dari 208 penelitian menggunakan dataset NASA. NASA MDP memiliki kelemahan yaitu kelas yang tidak seimbang sehingga dapat menurunkan kinerja dari model prediksi cacat software. Untuk menangani ketidakseimbangan kelas dalam dataset NASA MDP adalah dengan menggunakan metode level data yaitu Random Under Sampling (RUS). RUS ditujukan untuk memperbaiki ketidakseimbangan kelas. Metode yang diusulkan untuk menangani ketidakseimbangan kelas pada Neural Network (NN) adalah penerapan RUS. Eksperimen yang diusulkan untuk membandingkan hasil kinerja Neural Network sebelum dan sesudah diterapkan metode RUS, serta dibandingkan dengan model yang lainnya. Hasil Eksperimen rata-rata AUC pada NN (0.80)  dan NN+RUS (0.82). Hasil uji Wilcoxon dan Friedman menunjukan bahwa bahwa AUC NN+RUS memiliki perbedaan yang signifikan dengan NN dengan p-value wilcoxon = 0.002 dan  p-value friedman = 0.003 (p<0.05). Menurut uji friedman terdapat perbedaan AUC yang signifikan antara NN+RUS dengan NN, NN+SMOTE, NB, dan C45 karena nilai                  p-value < 0.0001. Maka dapat disimpulkan bahwa penerapan model RUS terbukti dapat menangani masalah ketidakseimbangan kelas pada prediksi cacat software berbasis neural network. Kata Kunci: Ketidakseimbangan Kelas, Neural   Network, Random Under Sampling 
Copyrights © 2015