Announcement
Starting on July 4, 2018 the Indonesian Publication Index (IPI) has been acquired by the Ministry of Research Technology and Higher Education (RISTEKDIKTI) called GARUDA Garba Rujukan Digital (http://garuda.ristekdikti.go.id)
For further information email to portalgaruda@gmail.com

Thank you
Logo IPI  
Journal > Journal of Intelligent Systems > Integrasi Metode Sample Bootstrapping dan Weighted Principal Component Analysis untuk Meningkatkan Performa k Nearest Neighbor pada Dataset Besar

 

Full Text PDF (684 kb)
Journal of Intelligent Systems
Vol 1, No 2 (2015)
Integrasi Metode Sample Bootstrapping dan Weighted Principal Component Analysis untuk Meningkatkan Performa k Nearest Neighbor pada Dataset Besar
Setiawan, Tri Agus ( Dian Nuswantoro University, Semarang)
Wahono, Romi Satria ( Dian Nuswantoro University, Semarang)
Syukur, Abdul ( Dian Nuswantoro University, Semarang)
Article Info   ABSTRACT
Published date:
29 Dec 2015
 
Abstract: Algoritma k Nearest Neighbor (kNN) merupakan metode untuk melakukan klasifikasi terhadap objek baru berdasarkan k tetangga terdekatnya. Algoritma kNN memiliki kelebihan karena sederhana, efektif dan telah banyak digunakan pada banyak masalah klasifikasi. Namun algoritma kNN memiliki kelemahan jika digunakan pada dataset yang besar karena membutuhkan waktu komputasi cukup tinggi. Pada penelitian ini integrasi metode Sample Bootstrapping dan Weighted Principal Component Analysis (PCA) diusulkan untuk meningkatkan akurasi dan waktu komputasi yang optimal pada algoritma kNN. Metode Sample Bootstrapping digunakan untuk mengurangi jumlah data training yang akan diproses. Metode Weighted PCA digunakan dalam mengurangi atribut. Dalam penelitian ini menggunakan dataset yang memiliki dataset training yang besar yaitu Landsat Satellite sebesar 4435 data dan Tyroid sebesar 3772 data. Dari hasil penelitian, integrasi algoritma kNN dengan Sample Bootstrapping dan Weighted PCA pada dataset Landsat Satellite akurasinya meningkat 0.77% (91.40%-90.63%) dengan selisih waktu 9 (1-10) detik dibandingkan algoritma kNN standar. Integrasi algoritma kNN dengan Sample Bootstrapping dan Weighted PCA pada dataset Thyroid akurasinya meningkat 3.10% (89.31%-86.21%) dengan selisih waktu 11 (1-12) detik dibandingkan algoritma kNN standar. Dari hasil penelitian yang dilakukan, dapat disimpulkan bahwa integrasi algoritma kNN dengan Sample Bootstrapping dan Weighted PCA menghasilkan akurasi dan waktu komputasi yang lebih baik daripada algoritma kNN standar. Keywords: algoritma kNN, Sample Bootstrapping, Weighted PCA
Copyrights © 2015