Announcement
Starting on July 4, 2018 the Indonesian Publication Index (IPI) has been acquired by the Ministry of Research Technology and Higher Education (RISTEKDIKTI) called GARUDA Garba Rujukan Digital (http://garuda.ristekdikti.go.id)
For further information email to portalgaruda@gmail.com

Thank you
Logo IPI  
Journal > Melek IT Information Technology Journal > IMPUTASI MISSING DATA MENGGUNAKAN METODE K-NEAREST NEIGHBOUR DENGAN OPTIMASI ALGORITMA GENETIKA

 

Melek IT Information Technology Journal
Vol 2, No 2 (2013): Melek IT
IMPUTASI MISSING DATA MENGGUNAKAN METODE K-NEAREST NEIGHBOUR DENGAN OPTIMASI ALGORITMA GENETIKA
Article Info   ABSTRACT
Published date:
01 Jul 2013
 
Salah satu permasalahan yang ada pada dataset adalah ketiadaan nilai pada data untuk atribut tertentu atau yang sering disebut dengan missing data. Metode yang paling mudah dan populer adalah K-Nearest Neighbour (KNN). Namun, metode ini memiliki beberapa kelemahan salah satunya adalah pemilihan nilai k yang tidak tepat dapat menurunkan kinerja klasifikasi. Penelitian ini bertujuan menangani missing data dengan teknik imputasi menggunakan gabungan algoritma KNN dan Algoritma Genetika (KNN-GA). GA digunakan untuk mengoptimasi nilai k pada KNN sehingga dapat menghasilkan nilai estimasi yang baik dengan MSE sekecil mungkin. Pengujian performansi dilakukan dengan membandingkan nilai MSE dan akurasi hasil klasifikasi antara metode KNN-GA dengan metode imputasi yang lain, yaitu : KNN, Mean, dan Median. Hasil yang diperoleh menunjukkan bahwa secara rata-rata metode imputasi KNN-GA memiliki nilai MSE terendah dan hasil akurasi klasifikasi yang inggi. Kata kunci : Algoritma Genetika, Imputasi, KNN, KNN-GA
Copyrights © 2013