Announcement
Starting on July 4, 2018 the Indonesian Publication Index (IPI) has been acquired by the Ministry of Research Technology and Higher Education (RISTEKDIKTI) called GARUDA Garba Rujukan Digital (http://garuda.ristekdikti.go.id)
For further information email to portalgaruda@gmail.com

Thank you
Logo IPI  
Journal > JUTI: Jurnal Ilmiah Teknologi Informasi > PENINGKATAN KECERDASAN COMPUTER PLAYER PADA GAME PERTARUNGAN BERBASIS K-NEAREST NEIGHBOR BERBOBOT

 

Full Text PDF (1,164 kb)
JUTI: Jurnal Ilmiah Teknologi Informasi
Vol 16, No. 1, Januari 2018
PENINGKATAN KECERDASAN COMPUTER PLAYER PADA GAME PERTARUNGAN BERBASIS K-NEAREST NEIGHBOR BERBOBOT
Putera, M Ihsan Alfani ( Departemen Informatika, Fakultas Teknologi Informasi dan Komunikasi, Institut Teknologi Sepuluh Nopember)
Murti, Darlis Heru ( Departemen Informatika, Fakultas Teknologi Informasi dan Komunikasi, Institut Teknologi Sepuluh Nopember)
Article Info   ABSTRACT
Published date:
05 Feb 2018
 
Salah satu teknologi komputer yang berkembang dan perubahannya cukup pesat adalah game. Tujuan dibuatnya game adalah sebagai sarana hiburan dan memberikan kesenangan bagi penggunanya. Contoh elemen dalam pembuatan game yang penting adalah adanya tantangan yang seimbang sesuai level. Dalam hal ini, adanya kecerdasan buatan atau AI merupakan salah satu unsur yang diperlukan dalam pembentukan game. Penggunaan AI yang tidak beradaptasi ke strategi lawan akan  mudah diprediksi dan repetitif. Jika AI terlalu pintar maka player akan kesulitan dalam memainkan game tersebut. Dengan keadaan seperti itu akan menurunkan tingkat enjoyment dari pemain. Oleh karena itu, dibutuhkan suatu metode AI yang dapat beradaptasi dengan kemampuan dari player yang bermain. Sehingga tingkat kesulitan yang dihadapi dapat mengikuti kemampuan pemainnya dan pengalaman enjoyment ketika bermain game terus terjaga. Pada penelitian sebelumnya, metode AI yang sering digunakan pada game berjenis pertarungan adalah K-NN. Namun metode tersebut menganggap semua atribut dalam game adalah sama sehingga hal ini mempengaruhi hasil learning AI menjadi kurang optimal.Penelitian ini mengusulkan metode untuk AI dengan menggunakan metode K-NN berbobot pada game berjenis pertarungan. Dimana, pembobotan tersebut dilakukan untuk memberikan pengaruh setiap atribut dengan bobot disesuaikan dengan aksi player. Dari hasil evaluasi yang dilakukan terhadap 50 kali pertandingan pada 3 skenario uji coba, metode yang diusulkan yaitu K-NN berbobot mampu menghasilkan tingkat kecerdasan AI dengan akurasi sebesar 51%. Sedangkan, metode sebelumnya yaitu K-NN tanpa bobot hanya menghasilkan tingkat kecerdasan AI sebesar 38% dan metode random menghasilkan tingkat kecerdasan AI sebesar 25%.
Copyrights © 2018