Logo IPI  
Journal > Journal of Information Systems Engineering and Business Intelligence > Penyelesaian Masalah Penempatan Fasilitas dengan Algoritma Estimasi Distribusi dan Particle Swarm Optimization

 

Full Text PDF (285 kb)
Journal of Information Systems Engineering and Business Intelligence
Vol 2, No 1 (2016): April
Penyelesaian Masalah Penempatan Fasilitas dengan Algoritma Estimasi Distribusi dan Particle Swarm Optimization
Utamima, Amalia ( Institut Teknologi Sepuluh Nopember)
Andrian, Angelia Melani ( Taiwan University of Science and Technology)
Article Info   ABSTRACT
Published date:
29 Apr 2016
 
Abstrak—Masalah penempatan fasilitas pada garis lurus dikenal sebagai problem Penempatan Fasilitas pada Satu Baris (PFSB). Tujuan PFSB, yang dikategorikan sebagai masalah NP-Complete, adalah untuk mengatur tata letak sehingga jumlah jarak antara pasangan semua fasilitas bisa diminimalisir. Algoritma Estimasi Distribusi (EDA) meningkatkan kualitas solusi secara efisien dalam beberapa pengoperasian pertama, namun keragaman dalam solusi hilang secara pesat ketika semakin banyak iterasi dijalankan. Untuk menjaga keragaman, hibridisasi dengan algoritma meta-heuristik diperlukan. Penelitian ini mengusulkan EDAPSO, algoritma yang terdiri dari hibridisasi EDA dan Particle Swarm Optimization (PSO). Tujuan dari penelitian ini yaitu untuk menguji performa algoritma EDAPSO dalam menyelesaikan PFSB.Kinerja EDAPSO yang diuji dalam 10 masalah benchmark PFSB dan EDAPSO berhasil mencapai solusi optimal.Kata kunci—penempatan fasilitas, algoritma estimasi distribusi, particle swarm optimizationAbstract—The layout positioning problem of facilities on a straight line is known as Single Row Facility Layout Problem (PFSB). Categorized as NP-Complete problem, PFSB aim to arrange the layout so that the sum of distances between all facilities’ pairs can be minimized. Estimation of Distribution Algorithm (EDA) improves the solution quality efficiently in first few runs, but the diversity lost grows rapidly as more iterations are run. To maintain the diversity, hybridization with meta-heuristic algorithms is needed. This research proposes EDAPSO, an algorithm which consists of hybridization of EDA and Particle Swarm Optimization (PSO). The objective of this research is to test the performance of EDAPSO algorithm for solving PFSB.  EDAPSO’s performance is tested in 10 benchmark problems of PFSB and it successfully achieves optimum solution.Keywords— facility layout, estimation distribution algorithm, particle swarm optimization
Copyrights © 2016